SURGICAL TECHNIQUE GUIDE

STABLYX®

cmc arthroplasty system

As described by:
Jorge L. Orbay, M.D.
Miami Hand & Upper Extremity Institute
Miami, Florida.
Indications for Use

The STABLYX CMC Arthroplasty System is intended to replace the base of the first metacarpal in cases of rheumatoid arthritis, traumatic arthritis, osteoarthritis or post fracture deformation of bone loss that present as either a painful, unstable thumb, or a thumb with limited range of motion. This implant is intended for noncemented, press fit use.

Please refer to the STABLYX Instructions for Use to review the warnings, precautions and contraindications for this system.
EXPOSURE

Make a 4cm incision centered over the carpometacarpal (CMC) joint along the course of the extensor pollicis brevis (EPB) tendon.

EPB TENDON RELEASE

Dissect to expose and release the EPB tendon proximal up to the 1st compartment and distal, then retract it ulnarly.

Be sure to protect the radial artery, as well as the lateral and dorsal branches of the radial nerve.
3 CAPSULOTOMY

The blood supply to the trapezium originates from a small branch of the radial artery that courses over the proximal aspect of the trapezium. To avoid devascularization of the trapezium, limit the proximal release of the capsular flap just to expose the dorsal osteophytes.

Note:
The STABLYX Bone Holding Forceps secured to the metacarpal provide added leverage.

Now mark the flap and elevate it as an ulnar based flap and releasing the dorsal ligaments.

Caution:
Avoid a longitudinal capsulotomy, as it is more likely to devascularize the trapezium.

4 APL TENDON RELEASE

Partially release the proximal insertion of the abductor pollicis longus (APL) tendon to allow full access to the base of the metacarpal.

Note:
The STABLYX Bone Holding Forceps secured to the metacarpal provide added leverage.
Using a sterile pen, mark a longitudinal line on the dorsal aspect of the metacarpal to aid in referencing a perpendicular base cut.

Resect the base of the metacarpal confirming that the cut is perpendicular to the metacarpal axis.

Expose the joint to remove excessive synovium.

Resect osteophytes from the metacarpal and the dorsal aspect of the trapezium.
LOCATING PALMAR OSTEOFYTE

A palmar osteophyte on the trapezium prevents joint reduction in osteoarthritic patients.

Using a sterile pen, mark the offending palmar and surrounding osteophytes.

Use the tip of the Capsular Elevator to locate the FCR tunnel.

Now release the volar capsule from the trapezium to isolate the palmar osteophyte.

REMOVAL OF PALMAR OSTEOFYTE

The FCR tendon is found beneath the palmar osteophyte.

Using the Curved Osteotome, first score the border of the palmar osteophyte, and then impact it from side to side in an attempt to remove the osteophyte in one piece.

Now mobilize the FCR tendon away from the trapezium.
TRAPEZIOPLASTY (Initial Shaping)

Insert the Trapezial Rasp between the FCR tendon and the trapezium.

Rasp the central palmar aspect of the trapezium into a saddle shape while taking care not to damage the articular surface.

The Capsular Elevator can be used as a probe to confirm that the palmar osteophyte has been removed.

TRAPEZIOPLASTY (Final Contouring)

Insert the Trapezial Contouring Tool between the FCR tendon and the trapezium. Confirm that only the smooth surface of the tool contacts the articular surface of the trapezium.

Complete the final contouring of the trapezium into a smooth saddle shape using an oscillating rotary motion.
11 TRAPEZIAL SIZING

Determine the size of the trapezium by positioning the Trapezial Sizing Tool over the midpoint of the trapezium.

The correct sizing is achieved when the Trapezial Sizing Tool:

A. Loosely fits to allow 1mm of translation in the AP direction

B. Can fit across the width of the trapezium

12 SURROUNDING OSTEOPHYTE REMOVAL

If the final Trapezial Sizer does not translate smoothly across the width of the trapezium, remove any remaining offending dorsal, medial or lateral osteophytes.
IDENTIFYING THE METACARPAL CANAL

Using the Straight Awl, locate and mark the entry point for the metacarpal canal.

Confirm the proper entry point and trajectory of the canal in both the AP and ML planes using fluoroscopy.

METACARPAL CANAL PREPARATION

The system includes five Metacarpal Rasps that correspond to each of the Trapezial Sizing Tools.

Insert the rasps sequentially to the etched depth mark as you attempt to rasp up to the corresponding Trapezial Sizing Tool used in Step 11.

If unable to rasp to the corresponding Trapezial Sizer, additional trapezioplasty may be required.

If necessary, prepare the resected end of the metacarpal using the Metacarpal Planer.
To establish the correct rotational alignment, use a STABLYX® trial one size smaller as it will freely rotate within the intramedullary canal.

A. Place the thumb in full opposition by opposing the thumb to the small finger and mark the location of the tab.

B. Now place the thumb in full radial abduction and mark the location of the tab. Identify the rotational midpoint.

Note:
If there is a substantial gap between the two marks due to a shift in rotation of the Trial prosthesis, reassess the trapezium for dorsal osteophytes.

TRIAL REDUCTION

Replace the undersized trial with the appropriate size.

Confirm that the proper clearance for the volar lip has been achieved by placing the CMC joint in full opposition and observing that hinging does not occur.

When reducing the CMC joint, be sure to avoid injury to the trapezial surface by using the back of Capsular Elevator.
Using fluoroscopy, articulate the joint through its full range of motion to confirm proper alignment and kinematics.

Also confirm that all offending osteophytes have been removed and that proper clearance for the palmar lip of the Trial prosthesis has been achieved.
The rotational alignment of the prosthesis should correspond to the previously marked rotational midpoint on the metacarpal.

A. Align the etched mark located on the dorsal side of the prosthesis to the marked rotational midpoint on the metacarpal.

B. Now insert the prosthesis until the keel firmly engages cancellous bone.

OPTIONAL SUTURE STABILIZATION

The final STABLYX prosthesis provides suture holes for attachment to the FCR tendon in cases where the FCR tendon interposes during abduction, or when severe laxity of the CMC joint is evident.

Using the Suture Passer, pierce the FCR tendon at the midpoint of the trapezial width.

Load an absorbable suture into the jaw of the Suture Passer leaving even lengths of suture at both ends.

Pass each lead of the suture through the corresponding hole of the final prosthesis.
JOINT REDUCTION

Reduce the CMC joint while protecting the trapezium using the shoehorn function of the Capsular Elevator.

Confirm that the FCR tendon is not interposed within the CMC joint.

Note:
If using the optional suture attachment points of the prosthesis, tie the suture over the prosthesis creating a suspensionplasty.

PROSTHETIC SEATING

Use the Impactor to fully seat the prosthesis.

Confirm that the prosthesis is fully seated before reducing the CMC joint.

Note:
If using the optional suture attachment points, be sure to keep the suture lines taut prior to seating the prosthesis and after reducing the CMC joint.
Manipulate the joint through its full range of motion to confirm implant stability and proper kinematics.

Confirm proper implant placement through the full range of motion using fluoroscopic imaging.
WOUND CLOSURE

Suture back the ulnar based capsular flap to the APL tendon, and then close the incision in your usual fashion.

POST-OP MANAGEMENT

Support the thumb in a splint for three to six weeks, and then allow functional use.
<table>
<thead>
<tr>
<th>Catalog #</th>
<th>DESCRIPTION</th>
<th>DIMENSIONS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX-CMA-IS1</td>
<td>STABLYX, CMC Arthroplasty Implant, Sz. 1</td>
<td>13.4 11.95 10.0 6.0</td>
</tr>
<tr>
<td>STX-CMA-IS2</td>
<td>STABLYX, CMC Arthroplasty Implant, Sz. 2</td>
<td>15.2 13.20 11.3 6.6</td>
</tr>
<tr>
<td>STX-CMA-IS3</td>
<td>STABLYX, CMC Arthroplasty Implant, Sz. 3</td>
<td>16.9 13.51 12.7 7.2</td>
</tr>
<tr>
<td>STX-CMA-IS4</td>
<td>STABLYX, CMC Arthroplasty Implant, Sz. 4</td>
<td>18.7 14.37 13.9 7.8</td>
</tr>
<tr>
<td>STX-CMA-IS5</td>
<td>STABLYX, CMC Arthroplasty Implant, Sz. 5</td>
<td>20.4 18.18 15.2 8.4</td>
</tr>
<tr>
<td>Loc #</td>
<td>Catalog #</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>OST-CRV</td>
<td>Curved Osteotome, 3mm</td>
</tr>
<tr>
<td>2</td>
<td>STX-VOR</td>
<td>Osteophyte Rasp</td>
</tr>
<tr>
<td>3</td>
<td>STX-VCE</td>
<td>Capsular Elevator</td>
</tr>
<tr>
<td>4</td>
<td>STX-MP1</td>
<td>Metacarpal Planar</td>
</tr>
<tr>
<td>5</td>
<td>STX-CMA-TC1</td>
<td>Trapezial Contouring Tool</td>
</tr>
<tr>
<td>6</td>
<td>HNDL-UQC-FXD</td>
<td>Quick Connect Handle</td>
</tr>
<tr>
<td>7</td>
<td>STX-CMA-IMP</td>
<td>CMC Impactor</td>
</tr>
<tr>
<td>8</td>
<td>STX-CMA-SZ1</td>
<td>Trapezial Sizer 1</td>
</tr>
<tr>
<td>9</td>
<td>STX-CMA-SZ2</td>
<td>Trapezial Sizer 2</td>
</tr>
<tr>
<td>10</td>
<td>STX-CMA-SZ3</td>
<td>Trapezial Sizer 3</td>
</tr>
<tr>
<td>11</td>
<td>STX-CMA-SZ4</td>
<td>Trapezial Sizer 4</td>
</tr>
<tr>
<td>12</td>
<td>STX-CMA-SZ5</td>
<td>Trapezial Sizer 5</td>
</tr>
<tr>
<td>13</td>
<td>STX-MR1-SP</td>
<td>Metacarpal Rasp, Sz. 1</td>
</tr>
<tr>
<td>14</td>
<td>STX-MR2-SP</td>
<td>Metacarpal Rasp, Sz. 2</td>
</tr>
<tr>
<td>15</td>
<td>STX-MR3-SP</td>
<td>Metacarpal Rasp, Sz. 3</td>
</tr>
<tr>
<td>16</td>
<td>STX-MR4-SP</td>
<td>Metacarpal Rasp, Sz. 4</td>
</tr>
<tr>
<td>17</td>
<td>STX-MR5-SP</td>
<td>Metacarpal Rasp, Sz. 5</td>
</tr>
<tr>
<td>18</td>
<td>STX-CMA-TS1</td>
<td>CMC Trial, Sz. 1</td>
</tr>
<tr>
<td>19</td>
<td>STX-CMA-TS2</td>
<td>CMC Trial, Sz. 2</td>
</tr>
<tr>
<td>20</td>
<td>STX-CMA-TS3</td>
<td>CMC Trial, Sz. 3</td>
</tr>
<tr>
<td>21</td>
<td>STX-CMA-TS4</td>
<td>CMC Trial, Sz. 4</td>
</tr>
<tr>
<td>22</td>
<td>STX-CMA-TS5</td>
<td>CMC Trial, Sz. 5</td>
</tr>
<tr>
<td>23</td>
<td>FRCP-BHS-RTC</td>
<td>Bone Holding Forceps</td>
</tr>
<tr>
<td>24</td>
<td>AWL-STR-020</td>
<td>Awl, Straight, 2mm</td>
</tr>
<tr>
<td>25</td>
<td>STX-CMA-STP</td>
<td>Suture Passer</td>
</tr>
</tbody>
</table>
ALIGN®
radial head system

REDUCT™
headless compression screw

PROTEAN™
radial head plate

GEMINUS®
distal radius system

STABLYX®
cmc arthroplasty system

IMPLATE®
wrist arthodesis nail

skeletal dynamics®
Innovation Based on Science